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Abstract: We address a detailed non-perturbative numerical study of the scalar theory on

the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems

in the matrix update process, and allows the investigation of different regimes of the model

in a precise and reliable way. We study the modes associated to different momenta and

the rôle they play in the “striped phase”, pointing out a consistent interpretation which is

corroborated by our data, and which sheds further light on the results obtained in some

previous works. Next, we test a quantitative, non-trivial theoretical prediction for this

model, which has been formulated in the literature: The existence of an eigenvalue sector

characterised by a precise probability density, and the emergence of the phase transition

associated with the opening of a gap around the origin in the eigenvalue distribution.

The theoretical predictions are confirmed by our numerical results. Finally, we propose a

possible method to detect numerically the non-commutative anomaly predicted in a one-

loop perturbative analysis of the model, which is expected to induce a distortion of the

dispersion relation on the fuzzy sphere.
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1. Introduction

The study of quantum field theory in non-commutative spaces has attracted considerable

attention over the last years [1 – 4]. This research area has a long history, since the pos-

sibility of a quantised structure of spacetime at short distances was first mentioned as

early as in the 1930’s in some correspondence among Heisenberg, Peierls, Pauli and Op-

penheimer [5, 6], and in the papers published by Snyder [7], by Yang [8] and by Moyal [9]

during the 1940’s. Although the original motivation to use non-commutativity as a tool

to regularise QFT was soon frustrated — while the renormalisation approach proved to

be a successful method to handle the divergences encountered in the formulation in com-

mutative spacetime —, non-commutative spaces have attracted renewed interest in more

recent years, with the application of this formalism to solid-state physics, to the problem

of the quantum Hall effect [10], to the study of MHD waves in astrophysics [11], and with

the discovery of the relevance of such spaces to string theory [12 – 18] and to a possible

quantum theory of gravity [19, 20].

Groenewold-Moyal R
n
θ spaces are among the most extensively studied non-commutative

spaces. The properties of QFT defined in these spaces — including those related to renor-

malisability, causality, non-locality, Poincaré invariance et cœtera — have been addressed

in several works [21 – 44]; a lattice-like regularised formulation has also allowed to investi-

gate numerically various aspects of these models [45 – 54]. In particular, one of the most

interesting — albeit troublesome — features is the fact that the effective action describing

QFT in a Groenewold-Moyal space is divergent when the external momentum along the

non-commutative directions vanishes: this effect arises from the integration of the high-

energy modes in non-planar loop diagrams, and is henceforth called “ultra-violet/infra-red

(UV/IR) mixing”.

Another class of non-commutative spaces is given by fuzzy spaces: they are built ap-

proximating the infinite-dimensional algebra of functions on some particular manifold by
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means of a finite-dimensional algebra of matrices. Under some conditions, this construc-

tion is possible for even-dimensional co-adjoint orbits of Lie groups which are symplectic

manifolds — see [55 – 68] and references therein. In particular, co-adjoint orbits of semi-

simple Lie groups are adjoint orbits; examples include the CPn complex projective spaces.

The most-widely known example of a fuzzy space is the fuzzy two-sphere S2
F [55], built

truncating the algebra of functions on the commutative sphere S2 to a maximum angular

momentum lmax. The fuzzy sphere depends on two parameters: the matrix size N = lmax+1

and the radius R; the commutative sphere and the non-commutative plane can be obtained

in different limits of N and R.

A one-loop perturbative calculation shows that, for every finite N , QFT on the fuzzy

sphere is finite; furthermore, the theory is not affected by the UV/IR mixing problem [69]

(although — due to a non-commutative anomaly — the latter re-emerges once a double-

scaling limit is taken, in which the fuzzy sphere goes over to the non-commutative plane

R
2
θ). This feature, as well as the fact that the fuzzy approach explicitly preserves the

symmetries of the original manifold for any value of N and allows a well-defined treatment

of the topological properties [70 – 84], has led to suggest the fuzzy space as a potentially

interesting candidate for regularisation of quantum field theory.

As a matter of fact, QFT on the fuzzy sphere is mathematically well-defined and

finite [85], and the formulation is amenable to a non-perturbative approach and to numer-

ical studies using Monte Carlo simulations, with fields represented as finite-dimensional

matrices. This approach has been followed in various recent works [86 – 92].

In the present paper we address a detailed Monte Carlo study of the Φ4 scalar field

theory on the fuzzy sphere; among other issues of interest, this simple model provides a

laboratory to test the possibility to use the fuzzy space approach as a potential regularisa-

tion scheme for more realistic field theories. As it concerns the practical implementation

of Monte Carlo simulations of the model, we shall present a novel algorithm, which re-

duces the autocorrelation time, combining overrelaxation steps with ergodic configuration

updates.

Preliminary results of this study have been presented in [93].

This manuscript has the following structure: in section 2 the theoretical framework

underlying the model is recalled, and the basic notations are introduced. In section 3 we

discuss the implementation of the numerical simulations of the model, and present the

results obtained with our algorithm. In section 4 we comment on the implications of these

results and on possible research perspectives. A technical discussion of the algorithm is

presented in the appendix A.

2. Review of the construction of the model

A general discussion of the mathematical construction of fuzzy spaces can be found in

many excellent articles and books, like, for instance [67]; for the scalar field theory on the

fuzzy sphere S2
F , we refer the reader to the detailed presentation in [85].

The basic idea is to replace the infinite-dimensional, commutative algebra of polynomi-

als generated by the {xi}i=1,2,3 coordinates on the two-dimensional sphere xixi = R2 em-
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bedded in R
3 with a non-commutative algebra generated by {x̂i}i=1,2,3 operators satisfying

a (trivially rescaled) su(2) Lie algebra. The latter can be realised using the Wigner-Jordan

construction of the su(2) generators, restricting to the finite-dimensional (N -dimensional)

subspace of the Fock space generated by a pair of mutually commuting creation operators.

Accordingly, the algebra of functions on the commutative sphere S2 is replaced by the

MatN algebra, whose elements can be expanded into irreducible representations of su(2).

The fuzzy sphere admits the commutative sphere S2 and the Groenewold-Moyal plane

R
2
θ as two different limits: the former is recovered for N → ∞ with R fixed, whereas the

latter can be obtained — at least locally — via a stereographic projection from a fixed

point, in the double limit: N → ∞, R → ∞, keeping R2/N fixed.

The action for a massive, neutral, scalar field with quartic interactions on the fuzzy

can be defined — according to the conventions used in [86] — as:

S =
4π

N
tr

(

Φ [Li, [Li,Φ]] + rR2Φ2 + λR2Φ4
)

, (2.1)

where Φ ∈ MatN is hermitian and can be expanded in the {Ŷl,m} polarisation tensor basis

as:

Φ =
N−1
∑

l=0

l
∑

m=−l

cl,mŶl,m . (2.2)

The model can be quantised in the path integral approach, defining the expectation

values of generic observables O = O(cl,m), which can be evaluated perturbatively, or esti-

mated numerically from Monte Carlo simulations.

The perturbative treatment of the theory is formulated via a proper definition of the

Feynman rules — in particular, the interaction vertices are modified in a non-trivial way,

which depends on N , and is consistent with the fusion rules. A careful one-loop analysis of

this model [69] shows that the UV/IR mixing phenomenon does not occur on S2
F ; however,

a non-commutative anomaly shows up, as a finite difference between planar and non-planar

tadpole diagrams.

This anomaly is expressed by a rotationally invariant, non-local contribution to the

quantum effective action; it distorts the dispersion relation, and survives the limit to the

commutative sphere. This seriously threatens the possibility to consider the fuzzy approach

as a bona fide regularisation scheme for theories defined in a commutative space; however,

according to [94], the problem may be overcome, redefining the interaction term in the

matrix action with a normal-ordering prescription, which allows to cancel the undesired

momentum-dependent quadratic terms in the effective action. An alternative, and more

general, possibility would be to include rotationally symmetric higher derivative terms in

the action, as suggested in [95].

On the other hand, when the Groenewold-Moyal plane limit is taken, the non-

commutative anomaly reproduces the logarithmic divergence which is characteristic of the

UV/IR mixing [28].

Fuzzy spaces were studied in [33] as a mean to regularise scalar field theory in non-

commutative R
n
θ spaces. There, it was shown that different phases can be distinguished

in the large N limit, according to the form of the distribution of eigenvalues associated
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to the matrix Φ. The argument goes as follows: For the free case, in the large N limit

and assuming that the cut-off is much larger than the non-commutative scale, the leading

contribution to the expectation values of even powers (2k) of the field come from planar

diagrams. Next, one observes that, in the large N limit, a clustering property for the

expectation values of products of integrals of the field holds, and implies that the measure

is strongly localised. This allows to identify the eigenvalue distribution as the Wigner

semi-circle law, which holds for gaussian random matrix models [96, 97].

Next, one can generalise to include interactions: for a scalar theory with bare square

mass m2 and quartic interactions with coupling g
4

in non-commutative space the resulting

eigenvalue distribution is known exactly [98]: for m2 larger than a critical value m2
crit the

eigenvalue density ρg(ϕ) has a connected support and is given by:

ρg(ϕ) =
1

2π

[

g′
(

ϕ2 +
1

2

)

+ (m′)2
]

√

1 − ϕ2 (2.3)

where g′ and (m′)2 are related to g and m2 — see [33] for the details. On the contrary, for

m2 < m2
crit, the eigenvalue distribution exhibits two disconnected peaks of finite width.

Although the arguments underlying this derivation are expected to hold only approx-

imately in the two-dimensional case (because the dominance of the planar diagrams over

the non-planar ones is weaker than in four dimensions), one can check if the numerical

results are consistent with the predicted features.

The real scalar model with quartic interactions on the fuzzy sphere was studied nu-

merically in [86, 87], where it was shown that the model exhibits three different phases: a

disordered phase, in which the field typically fluctuates around zero; a uniform order phase,

characterised by fluctuations around the broken-symmetry minima of the potential, and

a non-uniform order phase, which was described as new, intermediate, phase, intrinsically

related to the matrix nature of the fuzzy regularisation. The appearance of the latter was

interpreted assuming that, in a certain parameter range, the kinetic contribution to the

action might be negligible, and the dynamics of the system were effectively reduced to the

framework of a pure potential model [99, 100]. This phase was also described as analogous

to the striped phase predicted in [30] for non-commutative Groenewold-Moyal spaces, and

observed numerically in [51, 52].

3. Numerical simulations

The numerical approach to the model is completely straightforward, and, under many

respects, analogous to the more conventional lattice setting.1 Expectation values of the

1It should be noted, however, that the fuzzy space approach to a quantum theory differs with respect

to the lattice formulation in a number of aspects, which also have practical implications for the computer

simulations. In particular, in lattice field theory there exist many efficient update methods (including, for

instance, those described in [101 – 107]) which are based on the locality of the discretised action; these

methods allow to strongly damp the autocorrelation among subsequent configurations in the Markov chain.

Furthermore, parallel computation can often be implemented in a straightforward way. On the contrary, in

the fuzzy setting, the dynamics of each degree of freedom is non-trivially entangled with each other’s, and

— in general — the implementation of analogous techniques is not trivial.
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observables are estimated from averages over finite ensembles of matrices {Φ}, characterised

by a statistical weight which depends on the model dynamics; the algorithm generating the

matrix ensemble is built combining overrelaxation steps [101, 102] and canonical updates.

For the configuration-updating process, different types of pseudo-random number gen-

erators were compared; the G05CAF generator of the NAG library has eventually been

used in the production runs.

For each choice of the (N, r, λ,R) parameters, the autocorrelation time between ele-

ments in the thermalised matrix ensemble has been calculated using the auto-windowing

procedure [108]; the expectation values of the various observables have been evaluated from

ensembles of statistically uncorrelated matrices. The data analysis was done using stan-

dard techniques, and errorbars have been estimated using the jackknife method — see, for

instance, [109].

In the r < 0 regime, it is particularly interesting to study the behaviour associated

with the various l-modes. The classical minima of the potential correspond to uniform

distributions and obviously their physical content is purely described by the scalar (l=0)

channel. Since we are dealing with a quantum model and the system size is finite, the

ground state is actually unique, as quantum fluctuations allow finite-action tunneling events

between the two minima. When r is negative in sign and large in modulus, the profile of the

potential is very steep, and the typical matrix configurations lie in a close neighbourhood

around the classical minima; the trace of Φ allows to identify around which of the two

minima the matrix is lying at a given Monte Carlo time. The “trace susceptibility”, defined

as:

χ = 〈(trΦ)2〉 − 〈|trΦ|〉2 , (3.1)

encodes the physical information about the fluctuations of trΦ. When r is increased to

values closer to zero, the trace susceptibility exhibits a peak, corresponding to a maximum

in the quantum fluctuations. As usual, the location of a maximum in the susceptibility

approximately2 identifies the critical value where the “phase transition” to the disordered

phase would occur, for an infinite system.

The model already exhibits good scaling properties for small matrix sizes N < 10. As

an example, figure 1 shows the results obtained for the susceptibility, along the λ = N3

4π

line: the peak gets very pronounced as N is increased, and its location is not affected by

strong finite-N effects.

Taking a closer look at the matrix ensembles and at their physical content in non-zero

momenta allows to detect the non-uniform modes, and the rôle they play in the regime

under consideration. A simple variational analysis shows that also the commutative sphere

can admit non-uniform configurations characterised by a finite, negative total amount of

action.3 Numerically, the relevance of these configurations can be quantified through the

average values of the square moduli of the cl,m coefficients for l ≥ 1. The latter are indeed

2Modulo corrections due to the finiteness of N and/or R.
3It is easy to verify analytically that — at least in some parameter ranges — even an axially symmetric

(but non-uniform) configuration described in terms of the first Legendre polynomial may be favoured with

respect to the Φ = 0 uniform configuration, and thus mediate the tunneling events among the classical

minima of the potential.
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Figure 1: Behaviour of the trace susceptibility, as defined in eq. (3.1).

found to be non-vanishing for all of the N , λ and r values which we investigated; again,

in agreement with [86, 87], we observed a parameter range where the expectation value of

the l = 1 mode is larger than the scalar component.

The transition from the uniform- to the non-uniform-order phase can be interpreted

as an effect arising when the kinetic contribution to the action becomes negligible with

respect to the potential one [86, 87].

As figure 2 shows, our results confirm that at the transition the average kinetic contri-

bution is much smaller than the modulus of the potential. However, this behaviour persists

(and is, in fact, enhanced) down to more strongly negative r-values in the uniform order

regime, too — a fact that does not allow to interpret the existence of the striped phase as

solely due to the potential dominance.

Rather, the results are compatible with the fact that the tunneling between the min-

ima of the potential may be mediated by matrix configurations corresponding to non-

spherically-symmetric distributions on the sphere. This can be easily justified from the

analytical point of view (evaluating explicitly the action associated to such configurations),

and is fully consistent with the numerical data (which confirm a non-negligible expectation

value for the modes with l 6= 0 when r is not very far from zero).

Having presented the general features of the phase structure of the model, we now ad-

dress the test of the theoretical predictions formulated in [33]:4 The model can be described

by means of random matrix methods, and is characterised by well-defined properties of the

eigenvalue sector. In particular, the phase transition is associated with a change in the

topology of the support of the eigenvalue distribution.

We concentrated our attention onto matrices of size N = 15, 19, 21, 23, 31, 41 and 81.

4Note that the conventions in [33] differ with respect to eq. (2.1) and to those used in [86] by a trivial

rescaling of the Φ matrix, and the coefficients of the quadratic and quartic terms in the potential are denoted

as m2 and g, respectively.
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Figure 2: Average values of the kinetic term and modulus of the potential per degree of freedom,

in the proximity of the transition between the disorder and striped phases. Data obtained at fixed

λ = 3πN

25R2 .

At intermediate and large values of g the data agree well with the theoretical prediction,

which is indeed confirmed in the double-scaling limit. Figure 3 shows the evolution of the

eigenvalue density, from the one-cut to the two-cut phase.

We should emphasise that the agreement observed is highly non-trivial, because the

arguments underlying the derivation in [33] are expected to hold only approximately in two

dimensions.5 Although it would not be completely justified to perform a fit of the data to

the curve, the agreement between the numerical results and the theoretical curve, which

is a completely parameter-free prediction and does not involve any fitting procedure, is

striking.

On the contrary, the model exhibits significant quantitative deviations from the ex-

pected critical point at small g values. Although the qualitative pattern of the transition

is confirmed, the location of the transition point is shifted towards more negative r values.

In fact, this is not surprising: in this regime, the secondary maxima in the eigenvalue

distribution are no longer negligible; the system could rather be described by a multi-trace

model [110].

However, the general agreement of numerical results and theoretical predictions is also

confirmed by the scaling properties of the eigenvalue density support. The samples where

the observed width of the distribution support differs from the expected one by an amount

of the order of 5-10% or more correspond to strongly negative r values — which actually

may even already lie in the “uniformly ordered” phase.6

5This is due to the weaker dominance of planar diagrams over the non-planar ones in D = 2.
6The critical line corresponding to the transition from the non-uniform to the uniform order phase was

obtained numerically in [87], but a full theoretical description of this transition in the fuzzy sphere setting

is still missing.
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Figure 3: Evolution of the eigenvalue distribution from the one-cut (top-left plot) to the two-cut

phase (bottom-right). The theoretical prediction for the transition point is: (m′)4/(4g′) = 1.

Table 1 shows results for the numerical critical values of rR2, for various matrix sizes.

In the remaining part of this section, we shortly discuss the case when the classical

potential has a unique minimum, and propose a method to detect the effect of the non-

commutative anomaly.

A perturbative study of the model in this regime was presented in [69].7 As it was

discussed above, the non-commutative anomaly shows up as a (mild) non-local effect,

distorting the energy-momentum relation on the fuzzy sphere by a finite amount.

7In the notations of [69], the radius is set to the unit, the Φ matrix (whose size is denoted as N + 1) is

rescaled by a factor
√

2 with respect to eq. (2.1), and the coefficients of the quadratic and quartic terms in

the potential are denoted as µ2 and g

3!
, respectively.
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gR2 N (rR2)num
crit (rR2)th

crit gR2 N (rR2)num
crit (rR2)th

crit

8πN 15 −258.1 ± 5.2 −230.6 6

5
πN 15 −141.6 ± 4.4 −94.9

19 −353.0 ± 7.4 −333.7 19 −198.8 ± 7.3 −135.6

21 −410.2 ± 8.6 −390.0 21 −241.8 ± 8.8 −157.7

23 −460.3 ± 9.9 −449.2 23 −268.9 ± 9.6 −180.9

4πN 15 −194.9 ± 7.6 −169.2 4

5
πN 15 −126.4 ± 5.5 −77.6

19 −277.9 ± 9.8 −243.4 19 −183.2 ± 6.2 −110.9

21 −323 ± 13 −283.8 21 −220.1 ± 7.2 −128.9

23 −370 ± 14 −326.2 23 −252.3 ± 8.3 −147.8

2πN 15 −134.5 ± 6.4 −121.9 3

5
πN 15 −117.9 ± 3.4 −67.3

19 −194.8 ± 8.9 −174.6 19 −172.9 ± 4.8 −96.0

21 −219.3 ± 9.1 −203.1 21 −206.5 ± 5.6 −111.6

23 −280 ± 13 −233.0 23 −243.1 ± 6.4 −128.0

πN 15 −132.9 ± 7.4 −86.7 π
5
N 15 −99.7 ± 3.7 −38.9

19 −189.5 ± 9.2 −123.9 19 −143.4 ± 4.1 −55.5

21 −235 ± 11 −144.0 21 −168.0 ± 6.3 −64.5

23 −261 ± 15 −165.2 23 −213.5 ± 8.7 −73.9

10πN 15 −285.1 ± 5.1 −254.0 8

5
πN 15 −152.5 ± 4.5 −109.4

19 −392.0 ± 7.2 −368.0 19 −214.3 ± 6.2 −156.4

21 −442.9 ± 8.4 −430.4 21 −256.2 ± 7.2 −181.9

23 −507.7 ± 9.6 −496.1 23 −285.4 ± 8.3 −208.7

31 −803 ± 25 −789.1

41 −1262 ± 54 −1215.1

81 −3680 ± 290 −3435.4

Table 1: Numerical and theoretical values for the quadratic coupling at the critical point.

The one-loop effective action on the fuzzy sphere is [69]:

Sone-loop = S0 +
4π

N + 1
tr

[

δµ2

2
Φ2 −

g

24π
Φh

(

∆̃
)

Φ

]

+ O

(

1

N

)

, (3.2)

where δµ2 is the square-mass renormalisation:

δµ2 =
g

8π

N
∑

J=0

2J + 1

J(J + 1) + µ2
, (3.3)

while the non-commutative anomaly is given by the contribution involving h
(

∆̃
)

; h(x) is

the harmonic number: h(x) =
∑x

t=1

1

t
, with h(0) = 0, and ∆̃ is a function of the Laplace

operator, whose eigenvalue when acting on Ŷl,m is l. In particular, the action of h
(

∆̃
)

on

the Φ matrix appearing in eq. (2.2) reads:

h
(

∆̃
)

Φ =
N−1
∑

l=1

[(

l
∑

t=1

1

t

)

l
∑

m=−l

cl,mŶl,m

]

. (3.4)
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Figure 4: At large µ values, the channels associated to non-vanishing momenta are expected to be

slightly enhanced by the non-commutative anomaly. The plot shows preliminary results from tests

over an ensemble of matrices of size N + 1 = 7, at µ2 = 200, in comparison with the theoretical

prediction (dashed line).

In order to disentangle among the various terms contributing to the effective action, one

can tune the parameter in such a way, that the main momentum-dependent contribution

at order g comes from the non-commutative anomaly term only. Then, the spectrum of

relative weights associated with the various spin channels gets distorted, as g is changed:

larger probabilities are expected for higher l channels, when g is increased.

Preliminary numerical tests (see figure 4 as an example) confirm that the scalar com-

ponent does not depend on g, while Πl(g), the power of the modes associated to higher l

values, which can be defined in terms of the coefficients appearing on the right-hand side

of eq. (2.2) as:

Πl = 〈
l

∑

m=−l

|cl,m|2〉 , (3.5)

slowly increases with g, in rough agreement with the theoretical expectation. However,

due to the theoretical approximations and technical difficulties involved in the observation

of these fine effects, our data do not allow to make conclusive statements about this issue.

This problem may be addressed more thoroughly in future work.

4. Discussion

The data in the previous section confirm the theoretical predictions for a scalar theory

on the fuzzy sphere, as well as previous numerical results for the same model. The novel

algorithm we used for the simulation proved to be very efficient, enabling us to obtain

high-precision results for both the regimes that were investigated. The algorithm strongly

reduces the correlation among subsequent configurations in a Markov chain, in a way which
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is compatible with the dynamics of the quantum system, and limiting undesired numerical

artefacts to a minimum.

As it concerns the case of a classical scalar potential with two degenerate minima,

our data, obtained from simulations at a large number of points in the space of physical

parameters of the model, confirm and generalise the results obtained in similar numerical

works [86, 87]. We have discussed the rôle of non-uniform configurations on a fixed, finite

radius sphere and their relevance to tunneling events connecting the classical vacua — a

phenomenon which is not due to the non-commutative nature of the fuzzy regularisation,

nor can it be directly interpreted as a signature of the UV/IR mixing.8

Yet, the relation to UV/IR mixing shows up, once one considers the double-scaling

limit, and looks at the distribution for the matrix eigenvalues, which behave as a set of

collective, intrinsically non-local degrees of freedom, and whose statistical properties can

be worked out via random matrix methods. The UV/IR mixing manifests itself as the

high-energy modes suppress the distribution of the low-energy ones.

In our numerical study, we have successfully compared the observed eigenvalue distri-

bution with the predicted pattern. The eigenvalues, rescaled through a factor predicted by

the theory, fit very well to the [−1, 1] range, and their density undergoes a transition from

the “one-cut” to the “two-cut” regime. Although for the two-dimensional case one would

only expect an approximate agreement, the data for ρ(ϕ) follow the theoretical curve very

closely — except at very small g-values, where a multi-trace model [110] would probably

provide a better description of the system.

Next, we have also considered the m2 > 0 regime, and proposed an approximate

method to observe the non-commutative anomaly, through the spectrum distortion at

high momenta. Unfortunately, the parameter range in which unambiguous results can be

obtained is severely limited, due to theoretical and numerical constraints. The results of a

pilot study using this method look compatible with the expected effect, but for the moment

they do not allow us to draw definite conclusions about the large-N limit; this aspect may

be addressed again in future work.

In conclusion, we can say that the non-perturbative results obtained in the present

work confirm the current theoretical understanding of this simple non-commutative model,

and the virtues and limits of the fuzzy approach as a regularisation scheme.

On one hand, it is clear that the effects associated with non-commutativity are intrinsic

to the fuzzy regularisation, and the presence of the anomaly discussed above threatens the

possibility to use fuzzy spaces as a straightforward regularisation for QFT in ordinary (i.e.

commutative) spaces. In this perspective, it would be particularly interesting to study

in more detail the proposals that have been formulated [94, 95] to define an improved

formulation of the action, yielding the correct QFT limit.

On the other hand, the results discussed in this paper provide evidence that fuzzy

spaces are indeed a well-suited regularisation scheme for theoreies directly defined in non-

commutative spaces — e.g. Groenewold-Moyal R
n
θ spaces — and offer the possibility for a

8It may be instructive to point out that the situation for a finite-radius sphere is different with respect

to the case of an infinite plane.
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practical and efficient implementation of numerical studies of these models.

The success of this numerical study in the two-dimensional setting is very encouraging,

and in the future it may be very interesting to address the D = 4 case. This generalisation

would obviously be of great interest from the physical point of view, and — apart from a

larger computational effort — it is not expected to involve particularly difficult technical

problems. In fact, the observation of the most interesting non-commutative effects may

even turn out to be simpler than in D = 2 — due to the reasons discussed above.
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A. An overrelaxation algorithm for the fuzzy sphere

In large parts of this work, a novel algorithm was used, that improves the efficiency of the

numerical simulation. It allows to damp the autocorrelation between subsequent elements

in the Markov chain of configurations.

The basic idea is related to the overrelaxation technique in lattice gauge theory [101,

102]: The trial value in the update process of a given variable is chosen to be “as far as

possible” from the original value, and such that the action of the system is unchanged.9

In the lattice setting, this can be accomplished through a group reflection which can be

worked out exactly for the SU(2) group, and in an efficient way for a generic SU(N)

group [111, 112]. This technique cannot be directly implemented in the present case, due

to the fact that the Φ variable takes values in a domain of different nature: the space of

hermitian matrices of size N is non-compact, and, more important, a näıve “reflection” of

the Φ matrix would not be effective for the purpose of reducing the autocorrelation time,

since it would not allow to explore all of the physical orbits.

The algorithm we built generalises the principia underlying the overrelaxation tech-

nique, adapting them to the present case, and it works as follows: Assume Φ0 to be the

initial matrix configuration, obtained with some ergodic procedure; let S0 = S(Φ0) be

the associated euclidean action. Let Φ⋆ be a new, completely random (and, therefore,

completely independent from Φ0) hermitian matrix in MatN , with S⋆ = S(Φ⋆) the cor-

9This implies that the overrelaxation procedure is microcanonical; therefore the method is always com-

bined with other canonical techniques, in order to ensure ergodicity of the whole update process.
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Figure 5: Left: A typical Monte Carlo history of the action per degree of freedom and of tr(Φ),

obtained without overrelaxation; the data fluctuate close to one of the two minima of the potential,

and tunneling events are very rare. Data obtained from matrices of size N = 27, in the two-cut

regime. Center: Same as in the previous plot, but invoking the overrelaxation algorithm at Monte

Carlo times τ = 400, 800, 1200 and 1600. Right: Same as in the previous plot, but replacing the

overrelaxation steps with new starts from unthermalised configurations.

responding value of the action. If S⋆ > S0,
10 a new hermitian matrix Φ1, such that:

S1 = S(Φ1) = S0, can be built rescaling Φ⋆ as:

Φ1 = αΦ⋆, (A.1)

provided the following condition:

{

(S0 > 0) ∨

(

tr
(

Φ⋆ [Li, [Li,Φ⋆]] + rR2Φ2
⋆

)

< −R

√

−
NλS0

π
trΦ4

⋆

)}

(A.2)

is true. If that is not the case, then Φ⋆ is redefined (possibly iteratively) as:

Φ⋆ −→
Φ⋆ + Φ0

2
(A.3)

until the condition in eq. (A.2) is satisfied. Note that this shift would drive Φ⋆ closer and

closer to Φ0, thus inducing a correlation between corresponding matrix entries in Φ1 and

Φ0; nevertheless, in general the eventual value obtained for Φ1 may belong to a different

physical orbit with respect to Φ0.

The algorithm is efficient under general conditions, including the cases in which S(Φ)

is a function which varies strongly even for moderate changes in its argument, because the

process driving Φ⋆ towards Φ0 is exponentially fast, its implementation only involves trivial

numerical operations, and terminates in a finite (and typically small) number of steps.11

This algorithm proves superior to standard Metropolis (because it is not affected by the

ergodicity problem) and to repeated new starts, because full thermalisation takes longer;

figure 5 shows a comparison.

10If S⋆ ≤ S0, then Φ⋆ is accepted as the new matrix configuration.
11This is easily proven using continuity and the fact that the trivial α = 1 solution exists for Φ⋆ = Φ0.
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The initial hermitian matrix Φ⋆ can be chosen according to an arbitrary distribution;

in order to achieve the best efficiency, we tested various possibilities, and in the production

runs the matrix elements of Φ⋆ were chosen according to a gaussian distribution centered

around zero; the width of the gaussian is tuned according to an optimisation criterion.

The number of ergodic updates between the overrelaxation steps is another tunable

parameter of the algorithm. Typically, for the results presented here, one overrelaxation

step was invoked every 50, 200, 500, 1000, or 2000 steps.
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